Search results for "DNA damage and repair"
showing 2 items of 2 documents
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability
2021
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and pr…
Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis.
2010
Parvovirus B19 is a widespread virus with diverse clinical presentations. The viral nonstructural protein, NS1, binds to and cleaves the viral genome, and induces apoptosis when transfected into nonpermissive cells, such as hepatocytes. We hypothesized that the cytotoxicity of NS1 in such cells results from chromosomal DNA damage caused by the DNA-nicking and DNA-attaching activities of NS1. Upon testing this hypothesis, we found that NS1 covalently binds to cellular DNA and is modified by PARP, an enzyme involved in repairing single-stranded DNA nicks. We furthermore discovered that the DNA nick repair pathway initiated by poly(ADPribose)polymerase and the DNA repair pathways initiated by …